Skip to content

  • Home
  • Life Coach
  • Travel Lifestyle
  • Luxury Lifestyle
  • Travel Tips
  • Urban Life
  • More
    • Contact Us
    • Disclaimer
    • Terms and Conditions
    • About Us
    • Privacy Policy
  • Tech
  • Toggle search form
Animating public transport networks on 3D stacked maps

Animating public transport networks on 3D stacked maps

Posted on March 30, 2025 By rehan.rafique No Comments on Animating public transport networks on 3D stacked maps

img { border: 5px solid #FFFFFF; }

As much as I would like to, I can’t procrastinate participate in all 30 days of the
#30DayMapChallenge. So here is the reproducible code to create a 3D image with stacked maps and an animated public transport network. This should cover some topics of the 30DayMapChallenge.

  • 2: Lines
  • 4: Hexagons
  • 11: 3D
  • 12: Population
  • 20: Movement

Animating public transport networks on 3D stacked maps

install.packages('easypackages')
easypackages::packages('geobr', 'aopdata', 'gtfs2gps', 
                       'data.table', 'sf', 'viridis',
                       'magrittr', 'dplyr', 'ggnewscale',
                       'ggplot2', 'gganimate', 'av')



###### Functions to tilt sf ---------------------------------------------
# more info at https://www.urbandemographics.org/post/figures-map-layers-r/
rotate_data <- function(data, x_add = 0, y_add = 0) {
  
  shear_matrix <- function(){ matrix(c(2, 1.2, 0, 1), 2, 2) }
  
  rotate_matrix <- function(x){ 
    matrix(c(cos(x), sin(x), -sin(x), cos(x)), 2, 2) 
  }
  data %>% 
    dplyr::mutate(
      geometry = .$geometry * shear_matrix() * rotate_matrix(pi/20) + c(x_add, y_add)
    )
}

rotate_data_geom <- function(data, x_add = 0, y_add = 0) {
  shear_matrix <- function(){ matrix(c(2, 1.2, 0, 1), 2, 2) }
  
  rotate_matrix <- function(x) { 
    matrix(c(cos(x), sin(x), -sin(x), cos(x)), 2, 2) 
  }
  data %>% 
    dplyr::mutate(
      geom = .$geom * shear_matrix() * rotate_matrix(pi/20) + c(x_add, y_add)
    )
}


###### DATA: city boundary ---------------------------------------------
code_muni <- geobr::lookup_muni(name_muni = 'Fortaleza')$code_muni
city <- read_municipality(code_muni = code_muni)




###### DATA: population from aopdata ---------------------------------------------

#' more info at https://www.ipea.gov.br/acessooportunidades/en/
aop <- aopdata::read_access(city = 'fortaleza', mode="public_transport", geometry = T)

# select areas with population
aop <- subset(aop, P001 > 0)




###### DATA: pubic transport data ---------------------------------------------

# read GTFS data

# I'm using a local file, but you can use a sample GTFS by uncommenting the line below 
gtfs_file <-  './GTFS_fortaleza_20211020.zip'
#gtfs_file <- system.file("extdata/fortaleza.zip", package = "gtfs2gps")
gtfs_raw <- gtfs2gps::read_gtfs(gtfs_file)

# select trips btween 7am and 8am
gtfs <- gtfs2gps::filter_day_period(gtfs_raw, period_start="07:00:00", period_end = '08:00:00')

# select a sample of n routes
set.seed(42)
nroutes <- 80
myroutes <- sample(x = unique(gtfs$routes$route_id), size = nroutes, replace = F)
gtfs <- gtfs2gps::filter_by_route_id(gtfs, route_ids = myroutes)

# get route geometries
routes <- gtfs2gps::gtfs_shapes_as_sf(gtfs)

# convert GTFS to GPS-like data.table
gps <- gtfs2gps(gtfs, parallel = T, spatial_resolution = 200)
gps <- gps[ between(departure_time, as.ITime('07:00:00'), as.ITime('08:00:00'))]

# Convert "GPS" points of vehicle positions into sf
gps_points <- sfheaders::sf_point(gps, x = "shape_pt_lon" , y = "shape_pt_lat", keep = T)
sf::st_crs(gps_points) <- 4326

# rotate vehicle positions and back to points
gps_points_r <- rotate_data(gps_points, y_add = 0.3)
gps_points_df <- sfheaders::sf_to_df(gps_points_r, fill = T)

# remove missing
gps_points_df <- subset(gps_points_df, !is.na(departure_time))


###### Plot ---------------------------------------------

# annotate parameters
x = -80.92
clr="gray40"
sz = 4

# city boundary
temp1  <- ggplot() +
              geom_sf(data = city %>% rotate_data_geom(y_add = .03), color="gray90", fill="gray90", show.legend = FALSE) +
              annotate("text", label="City boundary", x=x, y=9.10, hjust = 0, color=clr, size=sz) +
              labs(caption = "Image by @UrbanDemog")

temp2 <- temp1 +
  
  # Population Income
  geom_sf(data = subset(aop, P001>0) %>% rotate_data(y_add = .1), aes(fill=R001 ), color=NA, show.legend = FALSE) +
  scale_fill_viridis_c(option = 'E') +
  annotate("text", label="Income", x=x, y= 9.18, hjust = 0, color=clr, size=sz) +
  
  # Employment accessibility
  new_scale_fill() +
  geom_sf(data = subset(aop, P001>0) %>% rotate_data(y_add = .2), aes(fill=CMATT60 ), color=NA, show.legend = FALSE) +
  scale_fill_viridis_c(option = 'inferno') +
  annotate("text", label="Job access", x=x, y= 9.25, hjust = 0, color=clr, size=sz) +

  # public transport routes
  geom_sf(data = routes %>% rotate_data(y_add = 0.3), color="gray80", alpha=.4, show.legend = FALSE) +
  annotate("text", label="Public transport \nNetwork", x=x, y= 9.35, hjust = 0, color=clr, size=sz) +

  # public transport trips
  new_scale_color() +
  geom_point(data = gps_points_df, aes(x = x, y=y, color = shape_id), size= .8, alpha = 0.5, show.legend = FALSE) +
  # annotate("text", label="Public transport \nvehicles", x=x, y= 9.35, hjust = 0, color=clr, size=sz) +
  scale_colour_viridis(discrete = T) +
  theme_void() +
  
  # gganimate specificatons
  labs(title="Time: {frame_time}") +
  transition_time(as.POSIXct(departure_time) + 10800) +  # need to fix issue with time zone
  shadow_wake(wake_length = 0.015, alpha = FALSE) +
  ease_aes('linear') +
  coord_sf(xlim = c(-81.5, -80.8)) +
  theme(plot.background = element_rect(fill="white", color="white"),
        plot.caption = element_text(color="gray30"))



###### Save ---------------------------------------------

# save gif
anim_save(animation = temp2, "stacked_map_gtfs2gps222.gif", fps = 10, width=550, height=400)

# save mp4
anim <- animate(temp2, duration = 10, fps = 10, renderer = av_renderer(), width=550, height=400)
anim_save(animation = anim, "stacked_map_gtfs2gps222.mp4", width=550, height=400)


Urban Life

Post navigation

Previous Post: Small but mighty, the all-new Lexus LBX
Next Post: Body Glove Cruise Adventures | Big Island Of Hawaii {Review}

More Related Articles

Testing… | HOT Urban Gardening Coalition Testing… | HOT Urban Gardening Coalition Urban Life
The Last Leaf Gardener: Not so fast, Youngquist The Last Leaf Gardener: Not so fast, Youngquist Urban Life
All the family I have known and met All the family I have known and met Urban Life
Dos and Don’ts When Visiting Australia in 2025 – For Urban Women Dos and Don’ts When Visiting Australia in 2025 – For Urban Women Urban Life
860: Julia Daikin on on Wild Nutrition: Seed Saving for Wellness. 860: Julia Daikin on on Wild Nutrition: Seed Saving for Wellness. Urban Life
Cities and News: Interview with Lila Caimari Cities and News: Interview with Lila Caimari Urban Life

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Posts

  • How to Prepare for an Active Hurricane Season
  • Travel Guide: Ultimate 5-Day Itinerary for Walt Disney World | How to Have a Magical Solo Long Weekend at Walt Disney World Orlando
  • AYRIAL Welcomes Internationally Recognized Marc Lainhart the Intuitive Prospector in Seattle Washington
  • I Tried Visiting Portland In One Day – Here’s What Happened
  • Expanding our Rail Network while Saving it from the Seas

Categories

  • Life Coach
  • Luxury Lifestyle
  • Travel Lifestyle
  • Travel Tips
  • Urban Life

Copyright © 2025 .

Powered by PressBook Blog WordPress theme