Skip to content

  • Home
  • Life Coach
  • Travel Lifestyle
  • Luxury Lifestyle
  • Travel Tips
  • Urban Life
  • More
    • Contact Us
    • Disclaimer
    • Terms and Conditions
    • About Us
    • Privacy Policy
  • Tech
  • Toggle search form
Creating a figure of map layers in R

Creating a figure of map layers in R

Posted on June 15, 2025 By rehan.rafique No Comments on Creating a figure of map layers in R

I like figures of map layers to illustrate the many different types of data sets
we combine to do urban and transport modeling. And oftentimes I get obsessed with like making maps that are reproducible with code in R. In this post I’ll be sharing a reproducible example showing how to create a figure of stacked maps like this one below.

Creating a figure of map layers in R

Quick background:
In 2014, I was trying to find a way to create map layers in R. This was before the sf library was created. Most of us were using the sp library for handling spatial data and
Barry Rowlingson was super helpful, as usual. I used Barry’s suggestion to create a
reproducible example so I could use it latter, but then sf was created and it completely changed how we do spatial analysis in R. Since then,
Lauren O’brien
proposed a simple way to
tilt and stack sf objects and
Stefan Jünger created
an elegant function to do this. I’ll be using Stefan’s function in my example below.

Load libraries

library(easypackages)
easypackages::packages("sf",
                       "raster",
                       "stars",
                       "r5r",
                       "geobr",
                       "aopdata",
                       "gtfs2gps",
                       "ggplot2",
                       "osmdata",
                       "h3jsr",
                       "viridisLite",
                       "ggnewscale",
                       "dplyr",
                       "magrittr",
                       prompt = FALSE
                       )

Functions to tilt sf

Original function created by Stefan Jünger.

rotate_data <- function(data, x_add = 0, y_add = 0) {
  
  shear_matrix <- function(){ matrix(c(2, 1.2, 0, 1), 2, 2) }
  
  rotate_matrix <- function(x){ 
    matrix(c(cos(x), sin(x), -sin(x), cos(x)), 2, 2) 
  }
  data %>% 
    dplyr::mutate(
      geometry = .$geometry * shear_matrix() * rotate_matrix(pi/20) + c(x_add, y_add)
    )
}

rotate_data_geom <- function(data, x_add = 0, y_add = 0) {
  shear_matrix <- function(){ matrix(c(2, 1.2, 0, 1), 2, 2) }
  
  rotate_matrix <- function(x) { 
    matrix(c(cos(x), sin(x), -sin(x), cos(x)), 2, 2) 
  }
  data %>% 
    dplyr::mutate(
      geom = .$geom * shear_matrix() * rotate_matrix(pi/20) + c(x_add, y_add)
    )
}


Load data

We’ll be using a few data sets available from the packages used here. The first thing we need to do is to load the data and crop them to make sure they have the same extent.

### get terrain data ----------------

  # read terrain raster and calculate hill Shade
  dem <- stars::read_stars(system.file("extdata/poa/poa_elevation.tif", package = "r5r"))
  dem <- st_as_sf(dem)
  
  # crop
  bbox <- st_bbox(dem)


### get public transport network data ----------------

  gtfs <- gtfs2gps::read_gtfs( system.file("extdata/poa/poa.zip", package = "r5r") )
  gtfs <- gtfs2gps::gtfs_shapes_as_sf(gtfs)
  
  # crop
  gtfs <- gtfs[bbox,]
  gtfs <- st_crop(gtfs, bbox)
  plot(gtfs['shape_id'])


### get OSM data ----------------

  # roads from OSM
  roads <- opq('porto alegre') %>%
           add_osm_feature(key = 'highway',
                           value = c("motorway", "primary","secondary")) %>% osmdata_sf()
  
  roads <- roads$osm_lines
  
  # crop
  roads2 <- roads[bbox,]
  roads2 <- st_crop(roads2, bbox)
  plot(roads2['osm_id'])


### get H3 hexagonal grid ----------------

  # get poa muni and hex ids
  poa <- read_municipality(code_muni = 4314902 )
  hex_ids <- h3jsr::polyfill(poa, res = 7, simple = TRUE)
  
  # pass h3 ids to return the hexagonal grid
  hex_grid <- h3jsr::h3_to_polygon(hex_ids, simple = FALSE)
  plot(hex_grid)
  
  # crop
  hex_grid <- hex_grid[bbox,]
  hex <- st_crop(hex_grid, bbox)
  plot(hex)


### get land use data from AOP project ----------------
#' more info at https://www.ipea.gov.br/acessooportunidades/en/

  landuse <- aopdata::read_access(city = 'poa', geometry = T, mode="public_transport")
  
  # crop
  landuse <- landuse[bbox,]
  landuse <- st_crop(landuse, bbox)
  plot(landuse['CMATT30'])
  
  # hospitals
  # generate one point per hospital in corresponding hex cells
  df_temp <- subset(landuse, S004>0)
  hospitals <- st_sample(x = df_temp, df_temp$S004, by_polygon = T)
  hospitals <- st_sf(hospitals)
  hospitals$geometry <- st_geometry(hospitals)
  hospitals$hospitals <- NULL
  hospitals <- st_sf(hospitals)
  plot(hospitals)
  
  # schools
  # generate one point per schools in corresponding hex cells
  df_temp <- subset(landuse, E001>0)
  schools <- st_sample(x = df_temp, df_temp$E001, by_polygon = T)
  schools <- st_sf(schools)
  schools$geometry <- st_geometry(schools)
  schools$schools <- NULL
  schools <- st_sf(schools)
  plot(schools)

Plot

### plot  ----------------

# annotate parameters
x = -141.25
color="gray40"

temp1 <- ggplot() +
          
        # terrain
        geom_sf(data = dem %>% rotate_data(), aes(fill=poa_elevation.tif), color=NA, show.legend = FALSE) +
        scale_fill_distiller(palette = "YlOrRd", direction = 1) +
        annotate("text", label="Terrain", x=x, y= -8.0, hjust = 0, color=color) +
        labs(caption = "image by @UrbanDemog")

temp2 <- temp1 +
  
        # pop income
        new_scale_fill() + 
        new_scale_color() +
        geom_sf(data = subset(landuse,P001>0) %>% rotate_data(y_add = .1), aes(fill=R001), color=NA, show.legend = FALSE) +
        scale_fill_viridis_c(option = 'E') +
        annotate("text", label="Population", x=x, y= -7.9, hjust = 0, color=color) +

        # schools
        geom_sf(data = hex %>% rotate_data(y_add = .2), color="gray50", fill=NA, size=.1) +
        geom_sf(data = schools %>% rotate_data(y_add = .2), color="#0f3c53", size=.1, alpha=.8) +
        annotate("text", label="Schools", x=x, y= -7.8, hjust = 0, color=color) +
        
        # hospitals
        geom_sf(data = hex %>% rotate_data(y_add = .3), color="gray50", fill=NA, size=.1) +
        geom_sf(data = hospitals %>% rotate_data(y_add = .3), color="#d5303e", size=.1, alpha=.5) +
        annotate("text", label="Hospitals", x=x, y= -7.7, hjust = 0, color=color) +
  
        # OSM
        geom_sf(data = roads2 %>% rotate_data(y_add = .4), color="#019a98", size=.2) +
        annotate("text", label="Roads", x=x, y= -7.6, hjust = 0, color=color) +
  
        # public transport
        geom_sf(data = gtfs %>% rotate_data(y_add = .5), color="#0f3c53", size=.2) +
        annotate("text", label="Public transport", x=x, y= -7.5, hjust = 0, color=color) +
  
        # accessibility
        new_scale_fill() + 
        new_scale_color() +
        geom_sf(data = subset(landuse, P001>0) %>% rotate_data(y_add = .6), aes(fill=CMATT30), color=NA, show.legend = FALSE) +
        scale_fill_viridis_c(direction = 1, option = 'viridis' ) +
        theme(legend.position = "none") +
        annotate("text", label="Accessibility", x=x, y= -7.4, hjust = 0, color=color) +
        theme_void() +
        scale_x_continuous(limits = c(-141.65, -141.1))

  
# save plot
ggsave(plot = temp2, filename="map_layers.png", 
       dpi=200, width = 15, height = 16, units="cm")

Creating a figure of map layers in R

Urban Life

Post navigation

Previous Post: How To Be Unafraid Of Voicing Your Opinion
Next Post: Can You Do Measured Surveys in World Heritage Sites?

More Related Articles

Infrastructural Labour in the Backstage of Cities? – SPACE AND CULTURE Infrastructural Labour in the Backstage of Cities? – SPACE AND CULTURE Urban Life
New paper: time interval metric for cumulative opportunity accessibility New paper: time interval metric for cumulative opportunity accessibility Urban Life
Romance Was Born Pre-Fall 2025 Lookbook – For Urban Women Romance Was Born Pre-Fall 2025 Lookbook – For Urban Women Urban Life
Black Bookstores Will Never Die Black Bookstores Will Never Die Urban Life
Introduction to urban accessibility: a practical guide in R Introduction to urban accessibility: a practical guide in R Urban Life
bicycle brigades to the rescue – The Urban Observer bicycle brigades to the rescue – The Urban Observer Urban Life

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Posts

  • Cool Summer Drinks Out of Homegrown Herbs – Urban Gardening Mom
  • Buying an Engagement Ring: Does Size Really Matter?
  • Can You Do Measured Surveys in World Heritage Sites?
  • Creating a figure of map layers in R
  • How To Be Unafraid Of Voicing Your Opinion

Categories

  • Life Coach
  • Luxury Lifestyle
  • Travel Lifestyle
  • Travel Tips
  • Urban Life

Copyright © 2025 .

Powered by PressBook Blog WordPress theme